Telegram Group & Telegram Channel
AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/143
Create:
Last Update:

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions [2023] - ещё одно AI-открытие уходящего года

Продолжаем тему оптимизации программ. Почти одновременно с FunSearch вышла другая работа от Deepmind, правда, не применяющая LLM, и поэтому попавшая только в Just Links. Идеологически она похожа на AutoML-Zero, про который я уже тоже писал пост.

Итак, мы умеем легко и быстро производить на компьютере 4 базовые арифметические операции. Однако, "трансцендентные" функции, например, экспоненту, нельзя легко посчитать. Компьютер их считает приближённо, например, с помощью ряда Тейлора. При этом, нам достаточно уметь приближать её на промежутке [0;1], т.к. в целую степень мы умеем легко возводить и таким образом получить любую степень.

Итак, задача - найти как можно более короткую / быструю программу, вычисляющую экспоненту на отрезке с заданной точностью. Авторы представляют программу в виде графа вычислений (см. картинку). Вершинами является вход x, выход f, константы и математические операции, в которые по направленным рёбрам попадают входные данные.

Генетический алгоритм поддерживает популяцию графов, случайно добавляет мутации в них - добавление вершин, удаление, замена ребра и т.д. Оптимизируется одновременно точность и скорость (кол-во операций или время исполнения). Так как у нас 2 важных критерия отбора, используется специальный алгоритм сортировки популяции, выбирающий программы, сбалансированные по-разному с точки зрения критериев.

В результате, алгоритм не оставляет камня на камне от бейзлайнов, созданных приматами. Количество операций сокращается примерно в 2 раза, но это не самое крутое. Алгоритм подбирает функции так, чтобы компилятор оптимизировал их наиболее выгодно, в итоге скорость возрастает в >3 раза.

И вновь кожанные мешки показывают свою несостоятельность в сложных многослойных задачах, которые нельзя разбить на изолированные кусочки. End-to-end алгоритмическая оптимизация не оставляет нам никаких шансов.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/143

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Telegram Gives Up On Crypto Blockchain Project

Durov said on his Telegram channel today that the two and a half year blockchain and crypto project has been put to sleep. Ironically, after leaving Russia because the government wanted his encryption keys to his social media firm, Durov’s cryptocurrency idea lost steam because of a U.S. court. “The technology we created allowed for an open, free, decentralized exchange of value and ideas. TON had the potential to revolutionize how people store and transfer funds and information,” he wrote on his channel. “Unfortunately, a U.S. court stopped TON from happening.”

Knowledge Accumulator from kr


Telegram Knowledge Accumulator
FROM USA